Using human biomass and its spatial...

In the News

Bagamoyo academy pupils briefed on product testing at IHI

(Bagamoyo) The IHI Vector Control Product Testing Unit in Bagamoyo today hosted pupils from Stephen Tito Academy who visited the IHI Kingani site to learn about malaria research. IHI’s Emmanuel …

IHI chief: Hub for innovative minds in the pipeline

(Dar es Salaam) Ifakara Health Institute (IHI) Chief Executive Director Dr. Honorati Masanja has unveiled plans to establish an innovation hub in the Institute’s birthplace – Ifakara. IHI Chief Executive …

Recent Projects

Sustainable, Healthy, Learning Cities and Neighbourhoods

The Sustainable, Healthy, Learning Cities and Neighbourhoods is an exciting project in which IHI works with a consortium of partners from Asia and Africa to 1) develop capacity for improved …

Development of a new tool for malaria mosquito surveillance to improve vector control

Malaria transmission is influenced not only by vector abundance, but as well by demographic traits such as vector species and age structure, as these influence the intensity by which the …

Using human biomass and its spatial distribution to predict mosquito-borne disease transmission patterns in rural Tanzania

Disease-transmitting mosquitoes are known to preferentially bite bigger people over small people, and households with high occupancy have also been shown to have high Anopheles densities. It is therefore likely that overall directional movement of mosquitoes within villages, and subsequent disease transmission risk, could be greatly influenced by spatial distribution of household biomass. These observations, though widely accepted have not been previously developed into practical actionable methodologies for disease prevention and control. Yet this close  association  between  human aggregations  and  mosquito biting risk may significant influence on malaria parasite prevalence and infectiousness. In this study use controlled experimental hut studies and high resolution household-level sampling of indoor mosquito-biting densities, to demonstrate spatial correlations between human biomass, household occupancy  and indoor malaria vector densities in three villages in south eastern Tanzania. We also assess whether regular household census data could be used to identify households with the greatest Anopheles mosquito biting risk in rural Tanzania. Based on the understanding of how disease-transmitting mosquitoes identify and follow cues from vertebrate hosts, we hypothesize that their dispersal within villages, as determined by distribution of host biomass, could relied upon as an indicator of areas with high biting risk occurs.

 

Lead Scientists:

Emmanuel Kaindoa

Fredros Okumu

Gerry Killeen

 

Partners

Liverpool School of Tropical Medicine

Funders

Wellcome Trust

Projects Location

A PIXELBASE DESIGN
© Ifakara Health Institute (IHI), 2016