Evaluation of push-pull strategies for malaria...

In the News

Muhas don is new IHI board member

Prof. Kaaya. Ifakara Health Institute (IHI) Board of Governors (BOG) has appointed Prof. Sylvia Kaaya member of the IHI Board of Trustees (BOT) effective Wednesday January 10, 2018. The appointment …

Marcel steps down from IHI boards

Prof. Marcel Tanner has stepped down as Ifakara Health Institute (IHI) member of the Board of Trustees (BOT) and Board of Governors (BOG) effective Wednesday January 10, 2018. The Former …

Recent Projects

Development of a new tool for malaria mosquito surveillance to improve vector control

Malaria transmission is influenced not only by vector abundance, but as well by demographic traits such as vector species and age structure, as these influence the intensity by which the …

Demonstrating complete disruption of residual malaria transmission by eliminating Anopheles funestus mosquitoes from rural Tanzanian villages

In rural south-eastern Tanzania, where malaria prevalence has reduced by >60% since 2000, low-to-moderate transmission still persists despite very high coverage with long-lasting insecticidal bednets. Like in most residual transmission …

Push-pull for Malaria Control (PPMC)

Outdoor-biting mosquitoes constitute significant challenges to malaria elimination,as they cannot be adequately controlled using LLINs and IRS that effectively control susceptible indoor-biting and indoor-resting vectors like Anopheles gambiaes.s. To address these challenges, we propose a complementary new push-pull system that is affordable, effective and scalable,and also minimizes risk of insecticide resistance. This approach will offer communal level protections against mosquito bite where host seeking insects are repelled from their intended hosts, and lured towards specific lethal sites. We propose to build upon existing data demonstrating that transfluthrin (spatial repellents) can prevent>80% of mosquito bites over long range through modification of the odor-dispensing unit in the odor baited Mosquito Landing Box (MLB) to be able to emanate repellents, and combine this repellent with affordable lure-and-kill technologies (MLB fitted with low-cost electrocuting grids), to create low-cost push-pull systems offering peri-domestic protection to complement existing control strategies. The aim of this study is to demonstrate that low-cost “Push-pull” approaches combining area-wide repellents (Push) and an odor-baited lure-and-kill devices(Pull), could efficiently control early-biting and outdoor-biting mosquitoes and achieve peri-domestic protection necessary to complement current malaria prevention efforts. The work also includes a series of semi-field work to test the optimal configuration of push-pull subunits in terms of position and number of sub-units needed to offer >80% protection against mosquito bites, lastly is small scale field study to test the efficacy of the optimal configuration of the Push-pull system obtained from the semi-field experiments against wild resistant mosquitoes.

Lead Scientists:

Anorld Mmbando

Fredros Okumu

Sarah Moore


No items found


fp-relations 1979
The Wellcome Trust Masters Fellowship in Public Health and Tropical Medicine

Projects Location

© Ifakara Health Institute (IHI), 2016